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Gottingen, Federal Republic of Germany 

Received 20 December 1988 

Abstract. A new method for the representation of Clifford algebras is presented, which 
does not make use of minimal one-sided ideals. It was developed by us as a generalisation 
of the work of Hestenes on the real Dirac-Clifford algebra of the y matrices. Spinor spaces 
are subspaces isomorphic to a subalgebra of the original Clifford algebra. Inner products 
on spinor spaces are explicitly constructed and their isometries are studied. 

1. Introduction 

Clifford algebras are genuine geometric objects, since they are equivalent to exterior 
algebras with an inner product (Kahler 1960, 1961, 1962, Graf 1978). This is not SO 

for their representations, better known as spinors. Although a Clifford bundle can be 
given on any differential manifold carrying an inner product, for the construction of 
the associated spinor bundle there are restrictions of a topological nature on the 
manifold (see Bore1 and Hirzebruch 1958, 1959, 1960, Geroch 1968). The differences 
in the geometric status between Clifford algebras and spinors can perhaps be better 
understood if one uses the methods of representation theory of abstract algebras (van 
der Waerden 1967), which are based on the concept of minimal left ideals. This was 
applied on Clifford algebras by Chevalley (1954). Note that, since minimal left ideals 
are defined by means of idempotents of the Clifford algebra, their use makes concrete 
calculations very complicated. 

We present here a representation of Clifford algebras in themselves (Dimakis 1983, 
1985), which do not use minimal left ideals. The representation spaces will be isomor- 
phic linear subspaces of the original Clifford algebra, one of which will be additionally 
a Clifford subalgebra. Our method has some similarities to Cartan’s representation 
theory of Lie algebras, since it is based on a maximal commutative subalgebra of the 
Clifford algebra. I t  was developed by us as a generalisation of Hestenes work (Hestenes 
1966, 1967, 1973, 1985) on the real Dirac algebra of y matrices. 

We begin with the study of a real universal Clifford algebra V and obtain the results 
of Hestenes in case CE becomes the real Dirac-Clifford algebra of y matrices 9. Our 
arguments are different from those of Hestenes and can be generalised in a method 
applicable to any Clifford algebra. In order to obtain in this introduction as much 
information as is necessary to develop the general theory, we will also study the 
Majorana Clifford algebra A. 

Let V be generated by a fixed real finite-dimensional vector space X with a 
non-degenerated inner product g. We identify R and X with their images in V and 
write for the defining property of Clifford algebras, for x, y E X c Ce 

xy + yx  = 2g( x,  y j. (1) 
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3172 A Dimakis 

V is Z-graded as a linear space and Z,-graded as an algebra. Let w :  % --* % denote an 
involution of % defined for x E X c % by 

( 2 a )  x"' := -x  

and for a, bE % by 

(ab)"  := a"'b". ( 2 b )  

We call w the gradation involution of % with respect to X c V, since it defines a direct 
sum decomposition of %: 

% = %+O %- (3) 

with V* := { a  E %: a"' = *,a} and %'(e" c %*, V-%' c VT. Obviously Ce' is a Clifford 
subalgebra of %. We call %+(%-) the even ( o d d )  component of % with respect to 
X c V, since it consists of linear combinations of products of even (odd) numbers of 
elements of X .  

Since %' is closed under the Clifford product it is automatically a representation 
space of itself. We can extend it to a representation space of the whole %, if we 
fix some odd element U E %- and introduce an operation of % on V' defined for 
a = a + + a - ~ V , w i t h a + ~ % + , a - ~ % - a n d  $ € % + , b y  

a .$ :=  a ,$+a-$u.  (4) 

Since U is odd and the product of two odd elements is even, the right-hand side of 
(4) is even. In order for 0 to define a representation of % it must satisfy 

( a b ) o $ = a o ( b o $ )  ( 5 )  

for all elements a, b E V. In particular, if a, b are odd then ab is even and we conclude 
from ( 5 )  

u 2 =  1. (6) 

As we noted already, V+ is a Clifford subalgebra of % and thus a (universal) Clifford 
algebra for itself. Therefore we can apply the above procedure on it also. As we have 
done for V we take a:  %++ %'+ to be a gradation involution with respect to some 
generating subspace of %+. Again we decompose %+ into its even component %+' 
and its odd component %'-, with respect to R. We fix now an element U ' E  %'- with 
U'' = 1 and define for A = A+ + A- E %+ with A+ E %++, A -  E %+- and 6 E %++ 

A o [ : =  A+(+A-(u' .  (7)  
This again gives a representation of %+ on %++. The question arises now if we can 
extend this to become a representation of the original algebra %. To do that we extend 
R to w ' :  V+ % setting 

( 8 a )  .- an for a E %+ 

and 

for a E V- a"'':= (au)*u'.  ( 8 b )  

U""= U 

This defines an involution of Ce satisfying (i)  u is even with respect to o', that is 

(9) 
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and (ii) w, w ’  commute. We now decompose Ce- also into its even component Fe-’ 
and its odd component %-- with respect to w’ .  For a = a++ + a+- + a-, + a-- E Ce and 
5~ Ce++ w.e define the operation of Fe on %++ by 

sot:= a t + 5 + a + - @ ’ + a - + [ u  +a--,$uu’. (10) 

uu’ = u’u. ( 1 1 )  

U l W  = Uf. ( 1 2 )  

This must again satisfy ( 5 )  from which, for a, b E %--, we find 

Note also that, since U ’ E  Fee+, this is even with respect to w, that is 

The representation space %*+ is a Clifford subalgebra of Ce+ and hence of Ce. The 
other components in the direct sum decomposition 

% = %*+@ %+-a %-+a Fe-- 

g+- = Fe-+= % + + U  Fe-- = @++UU’ 

( 1 3 )  

are also representation spaces of % under the circle operation. This is so because of 

and the commutation property ( 1  1). 

gradation involution w”  of Fe, which commutes with w, w ’  and satisfies 
Application of the above procedure once more demands the finding of a new 

u I w ’ ’ -  u w ’ =  U - U’. 

Further we must find an element U”, which is odd with respect to U” ,  even with respect 
to w and w ‘ ,  commutes with U and U’ and satisfies 

1. U t f 2  = 

Continuing in this way we expect this process to stop after a number of steps. This 
number will be an invariant of the particular Clifford algebra. 

As a first example we take the real Majorana algebra 4 generated by { y o ,  y l ,  y 2 ,  
y ’ }  with 

y+y”  + y”yF = 277‘+” 

and 

(v’+”):=diag(-1, +1, + 1 ,  + l ) .  

If we set U = y l ,  then u t =  yoy2  commutes with U and satisfies u t 2 =  1. We take w ( U ’ )  

to be the gradation involution of 4 with respect to the generating basis { yo ,  y l ,  y 2 ,  
y 3 }  { y o ,  y o y I ,  y o y 2 ,  y0-y3}) .  We have w w ’ =  w’w and 

u w  = - U  u w ’  = U U’W = ut uIw’ = - U ’ .  

The even subalgebra of A with respect to w and w’  is linearly generated by (1, y I y 2 ,  
y ’ y ’ ,  y 2 y 3 } .  There is no further element U” and thus the representation process stops 
after the second step. To make concrete calculations we need a compact notation. Let 
l2 denote a set with elements the ordered pairs A = ( A , ,  A , )  with A , ,  A2 = 0, 1 .  For 
A, B E  l2 we define addition and multiplication in l2 by 

A 4  B := ( A ,  i B , ,  A,+ B, )  (14a)  

AB:= (AIB, ,  A2B2) (14b)  

and 
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where 4 denotes addition modulo 2. We define also the length IAl of A E  l2 to be 

IAl:= A,  + A 2 €  B.  (15) 

IAC Bi = [AI+ jB( -2/ABl. (16) 

It satisfies the relation 

We use now l2  as an index set to define 
w A : =  w A , w I A :  

where U':= id, w'  := w and composition of mappings is understood on the right-hand 
side of (17). Further we set 

(18) U A  := U A ,  U 1 %  

and introduce the idempotents 

A is decomposed in a direct sum 

. I~=  @ &A 

where 

A A : = { a  E A :  aW  la, aw = ( - 1 ) " 2 ~ } .  

The idempotents satisfy the relations 

TATB = SA,BTA 

and 

We also have 

Any element 

with aA E AA 

a E A can be uniquely decomposed into 

a = C  aA 
AE I? 

given by 

From the definition of the circle operation we have for $ E  

2 ~ A w A  
A € / ,  

Thus we obtain 

This formula will be used later as definition for the circle operation. 
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Let 9 denote the real Dirac-Clifford algebra generated by the y matrices { y o ,  y ’ ,  
y 2 ,  y 3 }  with the defining relation 

yWy” + y”yW = 277P”  

where 

( T ~ ~ ) : =  diag(+l, -1, -1, -1). 

We set 
U := yo 

and take w to be the gradation involution of 9 with respect to the linear space generated 
by { y o ,  y‘ ,  y 2 ,  y’}. A linear basis of 9+ is given by 

0 1 2 3  (1, YOYl, Y O Y Z I  Y0Y3? Y I Y 2 ,  Y 1 Y 3 ,  Y 2 Y 3 ,  Y Y Y Y 1. 
The elements of 9+ commuting with y o  are generated by (1, y’y’, y l y 3 ,  y 2 y 3 } .  From 
them only 1 satisfies ( 6 ) ,  which however is even with respect to all gradation involutions. 
Thus by 9 we stop after the first step. We have two representation spaces 9+, 9-, 
which have eight real dimensions. This is the number of the real components of a 
4-spinor. The elements of 9+ commuting with U = y o  constitute the basis of a subalgebra 
W’ of 9, which is isomorphic to the skew field of quaternions. From the commutation 
property we obtain for A E W’, a E 9 and I/J E 9+ 

ao(I/JA) = ( a o 4 ) A .  (26) 
This means we can interpret 9+ as a right W’-linear space. Taking this point of view 
9 + = W 2 .  Thus we obtain a 2 x 2  quaternionic representation of the y matrices. In 
physics we use complex representations, therefore we pick an element, say j E W’, to 
represent the imaginary unit 

j 2 =  -1 

and obtain an embedding of 9 in C4. 
In the Majorana case no elements of A++ = Aco,o, other than 1 commute with both 

U and U’. Thus Jllco,o, is isomorphic to R4. 
In what follows we formulate the above representation in a mathematically rigorous 

way applicable to all Clifford algebras. We restrict our analysis to real algebras, but 
the results apply also to complex ones. We begin with a presentation of real Clifford 
algebra theory, following mainly the book of Porteous (1969). A classification formula 
for real Clifford algebras will be derived, which will be of use in the next sections. 
According to this formula real Clifford algebras are completely characterised by three 
numbers. Next we introduce the circle operation and show under what conditions this 
gives a faithful and irreducible representation. This is the main part of the paper. It 
is divided into two parts, handling separately simple and not simple Clifford algebras. 
After the spinor spaces are obtained we construct inner products on them and study 
their isometry groups. Finally we apply the results obtained in some algebras of low 
dimension which are of interest in physics. 

2. Classification of real Clifford algebras 

R, 02 and W denote the fields of real numbers, complex numbers and quaternions. I f  
K denotes any of the above fields, then 2K will denote the ring K x K with addition 
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and multiplication defined componentwise 

(a ,  b)+(c ,  d ) : =  ( a + c ,  b + d )  

(a ,  b)(c, d ) : =  (ac, bd). 

Following Porteous (1969) we call ’K a doublejield. If B denotes K or ’K, then B(n) 
is the real algebra of n x n matrices with entries from B. Rp*4 will denote the orthogonal 
space R P + ,  with inner product of signature ( p ,  q ) ,  where p is the number of positive 
and q the number of negative signs. 

There are many different but equivalent ways to define a Clifford algebra. We are 
not going to repeat here any of these definitions, or prove universality and existence. 
The reader can find in Chevalley (1954), Rasevskii (1957), Riesz (1958), Atiyah er a1 
(1964), Hestenes (1966), Porteous (1969), Marcus (1979,  Greub (1978) his favourite 
definition and proofs. We again use the conventions of Porteous and write R,, to 
denote the universal Clifford algebra for (wpqq.  One of the basic tools in the exposition 
of Porteous is the use of orthonormal subsets of Clifford algebras. 

An orthonormal subset (ONS) of signature ( p ,  q )  of a real associative algebra A 
with unity 1 is a linearly free subset Q = { a i  E A: i = 1,  . . . , p + q }  of A, whose elements 
satisfy the relations 

aiaj + ajai = 0 for i # j  (27a) 

a f = l , a : = - 1  for i = l ,  ..., p ; j = p + l ,  . . . ,  p + q .  (27b) 
An orthonormal basis (ONB)  of A is an ONS, which generates A. 

The importance of ONS and ONB for Clifford algebras is based on the following fact. 

Theorem 1. If A is a real associative algebra with unity 1 and has an ONS Q =  
{ 6’, . . . , OP+,} of signature ( p ,  q )  such that 4’ . . . 1 9 ~ ’ ~  # * 1 ,  then R,, is isomorphic 
to the subalagebra of A generated by Q. If Q is an O N B  of A then A = R,,. 

For the classification of real Clifford algebras the following two lemmas are basic. 

Lemma 1. If Q is an ONS of signature (i) ( p  + 1 ,  q ) ,  (ii) ( p ,  q + 1 )  of a real associative 
algebra with unity 1 and a E Q satisfies (i)  a’= 1,  (ii) a 2  = -1 ,  then the set 

Q’ := { ba: b E Q - { a } }  u {a} 

is an ONS of signature (i) ( q +  1 ,  p ) ,  (i i)  ( p ,  q + 1) .  

1 and a, ,  a’, a 3 e  Q satisfy (ai)’ = -1 for i = 1,  2, 3, then the set 
(iii) If Q is an ONS of signature ( p ,  q + 3) of a real associative algebra with unity 

Q’:= {ba1a2a3 : E 0 ? 431) U { a l  3 a31 

is an ONS of signature ( q ,  p + 3 ) .  

Lemma 2. Let A be a real associative algebra with unity 1,  {el, e’} an ONS of A of 
signature (i)  ( 1 ,  l ) ,  (ii) (2, 0) and (iii) (0, 2), and Q an O N S  of A of signature ( p ,  q ) ,  
s u c h t h a t { e ’ , e 2 } u Q i s a n o ~ s o f A o f s i g n a t u r e ( i ) ( p + l , q + 1 ) , ( i i )  ( p + 2 , q ) a n d  
(iii) ( p ,  q + 2 ) .  Then from (i)  (e1e2)’= 1 ,  ( i i )  and (iii) (ele2)’= -1 and the fact that 
e1e2 commutes with elements of Q, we have Q‘:={be1e2: bc Q }  is an ONS of A of 
signature ( i )  ( p ,  q ) ,  (ii) and (iii) ( q , p )  whose elements commute with e’ and e2. 
Conversely the existence of Q’ implies the existence of Q. 
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From these two lemmas we obtain immediately 

From these and the relations 

R0,o -- R0.l = R, ,o=2R R0,2 = l-l R1.1 = W2) (30) 

W@R(p)=Wp)  2 w o R ( p ) = 2 w ( p )  w P ) o w q ) = R ( P q )  (31) 

coc=2c cow = C(2) wow =R(4) (32) 

and 

we can prove the following classification. 

Theorem 2. For p ,  q, m, k E 9 ,  p, q 3 0 ,  if (i) p + q  = 2m and p - q  = 8k or 8k+2,  then 

R , ,  = R m , m  = R(2"). 

R,,, =Rm-L,m+l =w(2"-'). 

(ii) p + q = 2 m  and p - q = 8 k + 4  or 8k+6,  then 

(iii) p + q = 2 m + 1  and p - q = 8 k + 3  or 8k+7,  then 

Rp,q=Rm,m+l=@(2'"). 

(iv) p + q = 2 m + l  a n d p - q = 8 k + l ,  then 

(v) p + q = 2 m + l  and p - q = 8 k + 5 ,  then 

R , ,  = R m - l , m + 2  = *w(2"-1) 

We can express the results of theorem 2 in  a single formula with the aid of the following 
sequences. 

F o r n E h , l e t  n=8k+m,where  k , m E E a n d O S m m 8 .  Weset 

for m = 0,4 
otherwise. 

s( n )  := 

f o r m = 0 , 1 , 2  

for m = 4, 5,6. 

4k for m = O  
for m = l  4k+ 1 
for m = 2,3 

cp(n):= 1 for m = 3 , 7  i: 
x ( n )  := (::T: for m = 4, 5,6,7. 

x : Z + Z is the extension of the Radon- Hurwitz sequence to negative integers. 

(33) 

(34) 

(35) 
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For p ,  q 3 0 we define the numbers 

5 := ,y ( p - q + 2) + q - 2 
and set K, := R, @, W for 77 = 0, 1, 2. 

Theorem 3. For p ,  q 3 0 

77 := cp ( P - 4 1 I7 := s(  p - q - 1 )  ~ : = 2 ~  ( 3 6 )  

R,, = RE,{+ , 0 R,,o = (O5R*,0) 0 Ro,ll 0 R,,O = K 7 (2< 1. (37)  

As becomes clear from the above formula a = 0 or 1 shows if the algebra is simple or 
not, 7 characterises the field of numbers and 5 is the dimension of the real matrix 
algebra which is isomorphic to R,,,. As a byproduct of (37)  we obtain from dim@,,) = 
dim('K,(2')), for n E E :  

, y (n  j = 1 + i ( n  - cp(n -2)  - s( n - 3 ) )  

5 = $ ( p  + q - 77 -a ) .  

and from this 

Before proceeding to the representation of Clifford algebras we need to improve our 
notation. For n E E we define the set 

l , :={A:=(A , , . . . ,  A , ) : A , = O , l ; i = l ,  . . . ,  n } .  (38)  
This becomes a commutative ring with unity with the operations of addition and 
multiplication defined by 

A 4  B:= C with 

AB:= C with C , = A , B , ;  i = l ,  . . . ,  n. 

C, = (A, + B,)  mod 2; i = 1 , .  . . , n 

The zero element of l,, is 0:= (0, . . . , 0) and the unity A:= ( 1 ,  . . . , 1 ) .  For A E Zn the 
length o f A = ( A , ,  . . . ,  A,) is defined by 

IAI:=A1+ . . .+ A,. 

The length satisfies the relation 

( A ( + ( B (  = ( A 4  B ( + 2 ( A B ( .  (39) 
I ,  has 2" elements and, as a ring, a structural similarity to the power set of (1,.  . . , n } .  
If Q ={el, .  . . , e " }  is an O N B  of R,, of signature ( p ,  q) ,  p +  q = n, then we set 

eA := fi ( e l l A #  : A = ( A , ,  . . . , A,,)], 
i = l  

2 O  has 2" elements and is a linear basis of R,,,. (See Hagmark and Lounesto (1985) 
for history and further development of the use of 1, in Clifford algebras.) 

The following identity: 

will be of use in some calculations of the next section. 

3. Representation of with U = O  

Q will denote an ONB of R,, of signature ( p ,  4 ) .  l, 7 and a are the numbers associated 
with R,, by (36). Here we restrict to the case a = 0. 
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As is clear from lemmas 1, 2 and theorem 3 we can find an O N B  Qoc 2' of R,, of 
signature ( 5 ,  [+ q), whose elements are homogeneous in 2', 

Qo:= {e,,  . . . , e,; ei t l , .  . . , e,+?} 

w i t h e f = l  f o r i = l ,  . . . ,  L a n d e f = - l f o r j = l + l  , . . . ,  {+q. 

Theorem 4. The set 

H:={u, :=e ,e i .+ , : i= l ,  . . . , [ }  (43) 

has following properties: 
(i) for all U, U ' E  H we have u2 = 1 and uu'=  u'u, 
(ii) to every U, E H there corresponds an O N B  Q, of R,,, such that U, is odd with 

respect to Q, and even with respect to all Qj with j # i. 

ProoJ: (i)  follows immediately from the definition of H. To prove (ii)  we construct 
explicitly the O N B  QI,  i = 1 , .  . . , 5. There are many different possibilities to do that; 
we parametrise one family of such constructions by K = ( K l ,  . . . , K , )  E l i .  

For i =  1 , .  . . ,[, if K ,  = O  we set 

Q,:={aei+,:aE Q o - - { e ~ + J ~ ~ { ~ i + J  

0, := {ae, : 4 E 0 0  - {e,}) U {e,} 

with signature ( 5 ,  [+ q), and if K ,  = 1 we set 

(44b) 
with signature (l+ q + 1, 5 - I) .  The case t = 0 is trivial. 

For all i = 1, .  . . , l  it is obvious that U ,  E Qt and therefore is odd with respect to 
Q,. Now for i  = 1, . . . , 5  with j f i, if K, = 0, we have U, = eIe5+# = (ere5+,)(ei+,ei+,), and 
if KJ = 1 then U, = -(e,e,)(q+,e,). In both cases U, is even with respect to QJ. 

For A E I ,  we set 

These satisfy the relations 

~ A T B  = GA,STA 

nA=1 
AE IC 

and 

The last relation leads with the aid of (41) to 

and 
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Lemma 3. If a E Rp,, commutes with some ui E H, then a = a ,  + a2ui,  where a , ,  a2 are 
generated by Qo - { e,, e,,,}. 

Prooj We can write a ER,, in the form 

a = a ,  + be, + ce,+i + a,e,e,+,, 

where a , ,  b, c, a2 are elements of R,,, which do not contain e,, e,+,, and thus commute 
with U,. Since U, anticommutes with e, and e,+, we have 

a = uiaui = a ,  - be, - ce,,, + a,eie,+i 

and consequently b = c = 0.  

Theorem 5. The set H defined in (43) is maximal in R,, with respect to its properties 
( i )  and (ii) in theorem 4. 

ProoJ: An element a E RP,,  which commutes with all U, E H can be written according 
to lemma 3 in the form 

where aA, A E IC, are generated by C := { e2<+ , ,  . . . , e26+,.,}. 
For 7 = 0 we have C = 0 and therefore a A  = A A  E R and a takes the form 

a =  hAuA with A ~ E R , A E I , .  
A € / (  

For 7 = 1 we have C = { e 2 , + , }  and therefore a A  = A,"+ Afe,,+,, with At ,  A f  E R  for all 
A E ~ .  Thus a=bo+b,e2,+, ,  where b,=2AEliAPuA and from (48a )  b ,=XAEl ip f r rA  
with p: E R, r = 0, 1. Since a must have the properties given in theorem 4, we demand 
a 2 =  1, which leads to 

a 2 =  ( b i -  b:)+(2bob,)e2,+l = 1. 

From the linear independence of the summands we obtain 

b;-b:=l bob, = 0. 

From the second of these equations and (46a) we find 

bob,= C / .L ," /LFTAIT~= / . . L , " ~ ~ T A = O .  
A,BelL AE i; 

Multiplying this equation with rrB for fixed B E  IC we obtain 

P W = O  for all B E  I,. 

Similarly from bi  - b: = 1 we obtain 

(pL3'- (PFY = 1 for all B E  I,. 
If now p: f 0 for some B E I,, then we must have pf = 0 and finally ( p  F)' = -1, which 
is impossible because the p are real numbers. Thus b, = O  and we obtain again 

a =  C hAuA with A A E R, A E I,. 
A s / (  

A similar reasoning leads to the above form for 77 = 2. 
Since a must be even with respect to all O N B  Qi, i = 1,. . . , 6' we find a = 1, and 

hence there exists no ONB of R,, with respect to which a is odd. Thus H is maximal. 
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Relaxing property (ii) of theorem 4, we can prove that the set H U generates a 
maximal Abelian subalgebra of RP,,. This implies that, in a matrix representation of 
Iwp , , ,  the elements of this subalgebra are simultaneously diagonalisable. In this respect, 
and because of the special role played by H in the construction of the representation 
that follows, it is an analogue of the Cartan subalgebra in the representation theory 
of Lie algebras (Humphreys 1972). 

We write w i ,  i = 1,. . . , 5, for the gradation involutions of R,, associated to Qi, 
i = 1,. . . , 5. As can be proved easily on Qo these involutions commute and thus their 
compositions 

i 
W A  := n ( w i ) A t  

i = l  
(49 )  

are also involutions of R,,,. Here II means composition of mappings and (wi)O:= id, 
(mi) ' := oi. Combining these with the U and T we obtain 

(UA)WB=(- l ) IABi  U A  ( 5 0 a )  

( T A ) w B = T  A + B .  ' (50b)  
We are now in the position to define the circle operation of RP,, on itself as we did in 
(24 )  and (25 )  for the Majorana algebra. We set for a, bER,, ,  

sob:= aWAb7TA. 
AEI,  

Under this operation R,, becomes a left R,,,-module. Since distributivity is trivial we 
must check only 

l o b = b  

which is a consequence of the definition and (46b)  and for a, b, c E R,, 

a o ( b o c ) =  c auA(boC)7TA= c UWAbWBCTBTA= (ab)uAC7TA=(ab)oc. 
A € / ,  A,BEl ,  A E ~ ,  

We look now for invariant submodules of Rp,,. As is clear an involution induces a 
direct sum decomposition. We set for A = ( A , ,  . . . , A5)  E l5 

S ,  := { a  E R ~ , , :  awl = ( - l )Aca} .  

Clearly 

Lemma 4. 
( i )  a E SA and b E S B  imply ab E SA+,. 
(ii) So is a subalgebra of R,,,. 
(iii) For all A E  lir U ~ E  SA. 

Theorem 6. So is a universal Clifford algebra isomorphic to R5-IKI,rl+IKl, with K E 1, 
defined in the proof of theorem 4. 

Proof: From lemma 4 we have for a E So,  auA E SA.  Thus the linear spaces SA, A E Is, 
are isomorphic and from (53) we obtain 

dim So = 2c+1.  
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From ( U a ,  b )  it is obvious that 

Q,:={e,:with i = K , l + j , j = l ,  ..., l } ~ { e ~ ~ - , ,  

is an O N B  of So of signature ( l - l K l ,  t )+IKl) .  

We set 

s, := e K , i + i  

UiSk = (-l)"'Sku, 

i =  1 ,  * .  . , l  j r  := e2i+r 

then it is obvious that 

uJ, = j ,  U, 

for i ,  k = 1 , .  . . , l  and r =  1 , .  . . , t). 

. . .  

. .  

Theorem 7. The set { a  E So : a commutes with all ui E H} is a subalgebra of So isomorphic 
to K,. We denote this subalgebra with Kk. 

Pro05 From lemma 3 we know that the elements of So, which commute with all U, E H, 
are generated by the ONS { j ,  : r = 1 , .  . . , t)} of signature (0, 7). Consequently this set 
is isomorphic to for 77 =0,  1, 2. As we know from (30) these Clifford algebras 
are isomorphic to the fields R, @, W respectively. 

Theorem 8. The sets SA, A E  li, are left R,,-modules under the circle operation and 
right K',-linear spaces. 

ProoJ If Ei E li, i = 1 , .  . . , l, denote the standard basis of li, then we have wi = w E , .  
From the definition of the circle operation ( 5 1 )  we find for a, b E R,, 

Thus if b E SA and hence satisfies bwi = ( - l ) A i b ,  then uo b satisfies the same conditions 
and hence is an element of SA for all a E R,,,. Therefore SA, A E li, are invariant 
submodules of R,,. 

Since K c So we have from lemma 4 for b E SA and A E K also bh E SA. Further- 
more the elements of Kk commute with all ui and hence with all rA. Therefore 

a.(  bA) = ( a  0 b ) h .  (57) 

In other words, we have proved that the sets SA, A E li, are representation R,,-modules 
over Wk (see van der Waerden 1967). 

For A = ( A , ,  . . . , Ai) E li we set 

and obtain the following identities: 

U A S B  = ( - l ) I A B ' S B U A  
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Lemma 5. 
(i)  For s E So and a E R  we have a o s  = ( a s ) o l .  
(ii) For a E R , , ,  a0 1 = 0 implies a r 0  = 0. 
(iii) For a, bER,,,,  ( a o b ) u ~ = a ~ ( b u ~ ) .  

Theorem 9. The representation R,,-modules SA,  A E  l,, over W', are faithful. 

Roo$ Let a E Rp,, be such that a 0 s = 0 for all s E So. Then from lemma 5 we have 
asv, = 0. Setting s = sA for all A E 1, and using (59b)  we obtain U T ~ A S A  = 0 for all A E I,. 
Since s A ,  A E  I t ,  are invertible we have a r A  = 0 for all A E I,, and from (466)  a = 0. 
Hence ker So = (0). 

For A E 1, the set { sBuA : B E IC} U (W ',U,) is a linear basis of SA. The above arguments 
and (47) lead again to ker SA = (0) for all A E f,. 

Theorem 10. The representation R,,-modules SA, A E  I,, over Wk are simple. 

Roo$ Let T c So be a linear subspace of So over W',. If T is invariant under the circle 
operation and T # {O}, then there exists t E T, t # 0, such that for all a E R,,,, a 0 t E T. 
In particular for a = ui E H ( a  = si E So), i = 1 ,  . . . ,5, uio t = uitui, ( s i o  t = s i t )  belongs to 
T. 

We set t ,  := t + u l t u ,  if the right-hand side does not vanish and t l  := s1 t otherwise. 
Thus we obtain t ,  Z 0, t l  E T such that t ,  commutes with u l .  

Applying this process I times we obtain an element t ,  # 0, tl E T such that t6 
commutes with all elements of H. Since T c So we obtain from theorem 7 that t, E K k 
and hence it possesses an inverse ti le So. From t ; ' o t ,  = 1 we find that 1 E T and 
therefore T = So. 

For A # 0, let TA c SA be invariant in SA under the circle operation. Then from 
(iii) of lemmas 4 and 5 we have T A u A  is invariant in So. Thus T A u A  = So and therefore 
TA = SA. 

We have shown that the sets SA, A E  f,, defined in ( 5 2 )  are simple and faithful 
representation R,,-modules over K,. We call these sets spinor spaces of R,,,. Since 
further So is a subalgebra of R,,, we call this the spinor algebra. 

Before closing this section we show how a matrix representation can be obtained 
with the above method. 

Every element (I, E So can be written in terms of the basis { s A  : A E l,} of So in the form 

$ =  E K',. (60 )  
Acl ,  

Setting 

S A : =  (61 )  
we obtain from ( 5 9 d )  and s i '  = i s A ,  sAsB = *sAiB, 

In this way we associate to every element (I, of So a column vector ((I,") E (K',)''. 
$ A  = T O O  ( S A * ) .  (62 )  

Similarly we associate to every element a of Rp,,a2' x 2' matrix over K; through 

where 
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4. Representation of Rp,q with U = 1 

The case U =  1 can occur only if n = p + q  is an odd number. Then if Q =  
{ S i  : i = 1, . . . , n} is an ONB of R,, of signature ( p ,  q ) ,  SA, A := (1,. . . , 1) E 1, lies in 
the centre of Rp,,. Furthermore U = 1 implies that 8; = 1 and R,, has two twosided 
ideals: Rp,,( 1 * SA). Thus Rp,9 is not simple and therefore it cannot possess a faithful 
and irreducible representation (van der Waerden 1967). As becomes clear from theorem 
2 ,  we have here only the two possibilities 7) = 0 and 7) = 2.  We study them separately. 

4.1. q = O  

From theorem 3 we have 

~ p . 9 = ~ 6 . 5 0 ~ 1 , 0 ~ ~ 5 , ~ + 1 .  

Qo:= { e l , .  . . , e5+1; e5+2,. . . , e2,+J 

We can construct therefore an ONB of signature (5, 5 +  1): 

(64) 

where e f = 1  and e f = - l  for i = l ,  ..., 5+1  and j = 5 + 2  , . . . ,  25+1. As in (43) we 
define the set 

(65) 

This set has the properties of theorem 4, but it is not maximal with respect to these 
properties. The O N B  associated to U,, i = 1, .  . . , 5, are constructed for some K E l6 as 
in (444 b). For i =  1,. . . ,5 ,  if K ,  = O  we set 

H:= {U, = ele5+,+1 : i = 1,. . . , 5). 

91 := { q + , + 1 :  a E Q o - { ~ 5 + , + l } } u { ~ b + , + , }  (66a) 

and, if K, = 1, we set 

Q1 := {ae,  : a E Qo - { e , } }  U { e , } .  (66b) 

In both cases the ONB Q1, i = 1, . . . , 5, have the signature ( 5 +  1 , l ) .  
As in the last section we define with the aid of the gradation involutions with 

respect to Q,, i = 1,. . . , 5, the circle operation and construct the spinor spaces. For 
the spinor algebra So we have the ONB 

OS := { e K , < + r  : i = 1, * 5) U {ec+l} (67) 
of signature ( l - J K ( + l ,  IKI). We set 

:= e K , c + i  for i = 1,. . . , 5; a := 

We again have 

S.U. ‘ I  = (-1)%u.s. J 1  aui = uia 

for i, j = 1, . . . , 5. The subset of So whose elements commute with all ui E H is generated 
by { a }  and hence is isomorphic to 2R, a +( l ,  -1). We denote it by ’R’. SA, A E  lL,  
give again representation R,,,-modules over 2R’, which are faithful but not simple, 
since H is not maximal. So consists of two simple submodules: So(l * a). 

with associated ONB Qo and H’ := H U { uo} we obtain a set maximal 
with respect to the properties of theorem 4. We can repeat the above construction 
taking as basis the set H’. This time we obtain an irreducible but not faithful 
representation. 

Setting uo := 
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4.2. q = 2  

This case can be handled exactly like the preceding one. We give therefore only the 
definitions of objects needed to construct the representation. 

From (37) we have 

R,,, =Rc,c+2@Ri,o= Rc,i+3. 

Let 

Q o : = { e i , .  . . , e, ; e < + i , .  . . , ext31 (69) 

be an O N B  of R,, of signature (5, 5+3) .  We set again 

H : = { u , = e , e , + , : i = 1 ,  . . . ,  l} .  (70)  

The associated O N B  are defined for some k E le exactly as in (44a, b ) ,  where ( 4 4 a )  have 
signature (5 ,  5+3)  and 446)  have signature ( 5 + 4 , 5 -  1).  Again the set H is not 
maximal. The spinor algebra has an O N B  of signature ( l - l K I ,  IK1+3) 

(71)  Qs := {s, : i = 1, . . . , 5 }  U G I ,  j 2 ,  a j ,  j , }  

where 

s, := eK,i+! 

j ,  := e2<+] 

a := e2c+lez6+2e25+3. (72) 

The subset of So, whose elements commute with the elements of H is generated by 
{jl, j , ,  a j l j z }  and is isomorphic to *W. The sets SA, A E  IC, are faithful but not simple 
representation &!,,-modules over 'H'. 

i = 1, * * . , 5 ,  

j 2  := erL+2 

5. Inner products in the spinor algebra and their isometry groups 

Q will denote an O N B  of R,., of signature ( p ,  q ) .  With respect to Q we have the 
gradation involution w and we define two anti-involutions p and U as follows: for 
a E Q, b, c E R,,, 

( b c ) P  := cPbP ( 7 3 a )  .- 
*- a 

and 

a" := -a  (bc)" := cub". 

We call p reversion and U conjugation of R,,, with respect to Q. Obviously u = p w .  
Every invertible element x E RP,, defines an involution through 

a ' = x - ' a x  (74) 

a E &!P,q,  In particular if xz = 1, then a" = xax. 
= W 

conjugation becomes quaternionic conjugation q + 4 and reversion will be denoted by 
q + 4. In '06 we have also the hyperbolic involution defined by 

In [WO,, = C conjugation coincides with complex conjugation z + Z and in 

hb:  *H + *K ( a ,  b ) + ( a ,  b ) h b : =  ( b ,  a ) .  (75) 
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Let X be a right linear space over B, where B = K  or 'K and K = R ,  C or 0-0, with 
x : B -+ B an anti-involution of B. A mapping 

X X X - + B  (X, Y) + ( X ,  Y) (76a) 

( x ,  Y + 2 )  = ( x ,  Y )  + ( x ,  z )  (766) 

is called a Bx-symmetric (B"-antisymmetric) inner product of X if 

( x ,  Y A  ) = ( x ,  Y ) A  

and 

( x ,  Y ) "  = (Y ,  x )  ( ( x ,  Y ) "  = - ( Y ,  x ) )  

for x, y ,  z E X and A E B. From (766, c )  we obtain 

( x A , y ) = A " ( x , y ) .  (76d) 

In the sequence we write for the field of complex numbers with conjugation, fi for 
the field of quaternions with reversion and the same field with conjugation. h6K 
will denote the double field *K with the hyperbolic involution (see Porteous (1969) 
for these definitions and notation). 

Theorem 1 1 .  For some fixed Y E  1, the mapping Sox  So-+ B defined by 

($, Q ) + ( * ,  ( P l y : =  7 r o o ( s y $ v Q )  (77) 
where 4, Q E So and B:= "K;, is a non-degenerate B(usy'-symmetric or 
B("'YY'-antisymmetric inner product on So according to whether s: = s,, or s; = -sy. 

ProoJ: Since sy are homogeneous in 2Q we have s$ = E ~ S ~  with = i l .  We set also 
s y s z  = E ~ , Z S ~ ; Z ,  E ~ , Z =  *l. Then we find from ( s A s B ) s C  = s A ( s B s C )  and ( s A s B ) O  = 
E A , B s ~ + B  two identities 

EA,B&A+B.C = E A , B + C & E , C  

In terms of the linear basis { s A  : A E 1,) of So we set 

EB,A = E A E E E A , B E A + B ~  

Substituting these expressions in (77) and using (59d) we obtain 

( A  ~ ) v =  C 
A s  li 

From this expression we obtain all properties of an inner product on So. In particular 
we find 

(78) 

The inner product defined in (77) is non-degenerate if (4, Q )  = 0 for all 4 E So implies 
Q = 0. To prove that, we set $ = sA,  A E l,, in (77) and obtain 

($9  Q ) Y Y  = E Y ( Q ,  $ ) Y .  

?TA+yo(P = o  for all A E 1,. 

Summing over A E  li and using (466) we obtain Q = O .  

Since Y E  1, we obtain from (77) 2' inner products on So. Not all of these inner 
products are independent (see Porteous 1969). 
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An element A of Rp,q will be called an isometry of the inner product ( , ) if it satisfies 

(Ao+, A0cp)v =(+, P ) Y  (79) 

for all $, cp E So. 
Since U, E H are homogeneous elements of 2' we have 

U; = ( - l)=,  U, (80) 

with X i  = 0 or 1 for i = 1, , . . , 5. These numbers define an element X := (C, , . . . , Xc) of 
I , .  From (80) we obtain 

U; = ( - l ) ' A " ' U A  q A  = T A + E .  ( 8 1 )  U 

Theorem 12. A E I W ~ , ~  is an isometry of ( , ) v  if and only if 
,$uW~+mA = 1. 

ProoJ: Expanding the circle products in (79) and using the definition (77) of (,),, we 
find after a lengthy calculation 

[ q y l ( l v (  A""'+'A - 1)]0 ~p = 0 

for all +, cp E S. By an argument similar to that used to prove non-degeneracy of ( , )y 
we obtain from this expression 

( A u " ' y + X A - 1 ) o c p  = O  

for all cp E So. Since So is faithful, we obtain immediately (82). 

6. Application on some low-dimensional Clifford algebras 

For small values of p ,  q a 0 we give now some examples of the new representation of 
R*.q. 

6.1. The Pauli algebra R83,0 

From ( 3 7 )  we find here 

IW3,0 I: R I , Z 3  C(2). 

Let Q = {U,, U,, u3} be an O N B  of R3.0 of signature (3,O). Then 

Qo = { e ,  = U,  ; e, = ~ 1 ~ 3 ,  e3 = uluz} 

is an O N B  of signature (1,2).  The set H has here one element U ,  = e,e,= U, with 
associated O N B  Q1 = Q ( K  = 0). The spinor algebra is the even subalgebra of R3.0. An 
ONB for it of signature (0,2) is given by 

Q S = { e 2 = u , u 3 ,  e3=u1u2}. 

Of the elements of Qs only e3 commutes with U,. We set therefore 

s, := e, = u1v3 j := e3 = u1u2. 

So is isomorphic to 52' with linear basis over C 

so=  1 SI = u,u3. 
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The circle operation of R3,o on So is defined in terms of the idempotents 

710 = ;( 1 + U , ) 7r, = f( 1 - U,) 

to be for a E R3,o and 5 E So 

a 0 5 = awO[.rro+ a"I&r, = a+5 + a - @ ,  

where w ,  is the gradation involution with respect to Q, , wo = id and a+ ( a - )  is the 
even (odd) part of a with respect to w l .  Setting 

we obtain with i = 1,  2, 3 and A, B = 0, 1 from 

u ~ o s q = s B u ~  

5 = soto  + SI 5' = a O + p Ow, U 2  + a U ,  U3 + p 'U2U)  

the Pauli matrices. A spinor [E So has the form 

where ,$A = aA+pAJ, aA, P A  ER, A E  I ,  = { 0 , 1 } .  For 5, q E So we have two inner 
products: 

(5,77)0= . r r o o ( ~ 0 5 " d = 5 0 7 7 0 + f 1 7 ) 1  

( 5 , T ) I  = ~ 1 O ( S 1 5 " ~ )  = 5OV1 - - 5 I T 0  

of which the first is b y m m e t r i c  and the second @-antisymmetric. From up = -u l  we 
find that for A E R the mapping 5 + A 0 5  is an isometry of ( , )o ((  , ),) if and only if 
ApA = 1 (A'A = 1 ) .  The isometry groups are U(2) (SL(2; e) ) .  

6.2. The Majorana algebra R3,1 

For this algebra we have 5 = 2, q = 0,  U = 0 and therefore 

R3,1 R2,2 R(4)* 

Let Q = { y o ,  y ' ,  y 2 ,  y 3 }  be an O N B  of signature ( 3 , l )  with ( yo)2 = -1 ,  ( y ' ) ' =  ( y 2 ) 2  = 
( y 3 ) 2  = 1.  An O N B  of R3,1 of signature (2 ,2 )  is given by 

o0 = { e ,  = y3 ,  e, = y 0 y 3 ;  e3 = y 3 y l ,  e4 = y 3 y 2 } .  

From this we obtain 
0 2  ul = e1e3 = y l  u 2 =  e2e4= y y 

with associated ONB Q, = Q and Q2 = { y o ,  y 0 y 3 ,  yoy I ,  yoy2}  ( K  = (0,O)). An ONB for 
the spinor algebra S ,  is given by 

Qs ={SI = y 3 y l ,  s2 = y3y2}. 

No element of S, other than the unit 1 commutes with both U,, u2.  Therefore Soo is 
isomorphic to R4 with linear basis over R 

so0 = 1 s10 = y' y l  so1 = Y 3 Y 2  SI] = y 2 y I .  
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The circle multiplication given in the introduction leads to a real representation of the 
y matrices. For 4, cp E So, with +!I = EAEli sAGA,  cp = EAEli sAcpA we have four inner 
products : 

00 o o + J I l o + ~ l o + ~ o l ~ l o + ~ l l ~ l l  (4, cp)oo= 4 cp 

(4,cp)10=4 cp JI cp - 4  cp + 4  cp 

(4, cp)ol = ~ ~ ~ ~ ~ ~ ~ J I ~ ' c p ~ ~ + ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

(JI,cp)1,=4 cp - 4  cp +4°1cp10-4 cp * 

00 I O -  10 00 01 1 1  1 1  01 

00 11 10 01 I 1  00 

( , )oo is R-symmetric and the remaining inner products are R-antisymmetric. With 
respect to Q, U: = - u l  and U; = -u2 we have 1 = ( 1 , l )  and the mapping $+ A 0 4  is 
an isometry of 

( 1 )oo 

( 9 )10 

if AuwtIA = 1 

if A""otA = 1 

if AUw!oA = APA = 1 

if A""ooA = A"A = 1. 
( 7 101 

( 9 1 1 1  

The isometry groups are O(4; R) for ( , )oo and Sp(4, R) for all others. 

6.3. The Dirac algebra RI,, 

For this signature we have I =  1, 7 = 2 and U = 0. Consequently 

R1,3 a W(2) .  

Let Q = { y o ;  y l ,  y 2 ,  y ' }  be an O N B  of signature (1,3),  where (yo)'  = 1 and ( 
( y 3 ) 2  = -1. We set 

= ( y 2 ) 2  = 

Qo= { Y 3 Y 0 ;  Y 3 Y l l  Y 3 Y 2 ,  r3> 
and obtain U, = yo with associated O N B  Q1 = Q. An O N B  for the spinor algebra is given 
by Qs = { y 3 y 0 ;  y ' y l ,  y3y2} .  The subalgebra of So, whose elements commute with U,, 
is linearly generated by { 1, j ,  = y 2 y 3 ,  j 2  = y 3 y 1 ,  j ,  = y 1 y 2 }  and is isomorphic to W. So 
is therefore isomorphic to W 2  and has {so= 1, s1 = y'y ' }  as linear basis over W'. Using 
the circle operation and setting 

we obtain a quaternionic 2 x 2 matrix representation of the Dirac algebra: 

0 1  .3-[; -;I. YO-[' O] Y q - l  0 -1 0 ] i 2  Y q l  O]il 
0 -1 

For 4 = S ~ I , ! I ~ + S , ~ ' ,  cp = socpo+s ,cp l~  So we have two inner products: 

(4,  c p ) o = ( L o c p o - ~ l c p l  n-symmetric 

(4,  c p ) l =  G o d  - bo Cl-antisymmetric 

which are equivalent (see Porteous 1969). Their isometries are determined by ApA = 1 
and A"A= 1, both giving Sp(1, 1; W) as an isometry group. 
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6.4. The de Sitter-Clifford algebra 

Here we have 5=1 ,  q = 2  and u = l .  Hence 

( w 1 . 4 ~  R1,3@R1,02 'W(2). 

Let Q = { e , ;  e,, e3 ,  e4, e5}  be an O N B  of R1.4 of signature (1,4). We set 

Q O = { e 2 e l ;  e29  e2e3,  e2e4,  e2e5) 

and obtain U ,  = e, with associated ONB Q, = Q. An O N B  for the spinor algebra So is 
given by 

QS={e2e1 ,  e 2 e 3 ,  e2e4, e2e5} 

where the last three elements of it commute with u l .  We set therefore, in accordance 
to 0 4.2, 

so=  1 s, = e le2  jl = e2e3 

j 2  = e2e4 j 3  = e3e4 a = e2e3e4e5. 

The set { j , ,  j,; a }  generates the double field 'H'. With the aid of the circle operation 
and setting 

1+(1 ,1 )  a + (1, -1) 

we obtain the matrix representation: 

We have two inner products. For +, cp E So we obtain from (77)  
2 -  W-symmetric 

hbfi -antisymmetric. 

-0 0 ( IL ,cp)o=+ cp -cL1cpl  

( + , c p ) , = ( @ )  cp - ( + )  (P 
-0 hb 1 - 1  hb 0 

( , )o is reducible (cf Porteous 1969). Since U; = -U, we find that ++ A o +  is an iso- 
metry of ( , )o (( , 11) if A p A  = 1 (A"A = 1). The isometry groups are respectively 
Sp(1, 1; W)@Sp(l, 1; W) and GL(2; W) .  

The representation constructed above is faithful but not irreducible. We obtain 
from it an irreducible but not faithful representation if we multiply the matrices given 
above with ( 1 , O )  or (0 , l ) .  

6.5. The anti-de Sitter-Cliflord algebras RZg3 and R3,2 

(i)  R2.3 .  For this algebra we find ( = 2 ,  7 = 1, u=O and 

R2,3  

Take Q = {e,,  e2; e3 ,  e4, e5}  to be an O N B  of R2.3  of signature (2,3) and set 

Q0=ie4e1r  e4e2; e4 ,  e4e3r e4e5)* 

We then have U ,  = e, and u2 = e2e3. The associated O N B  are Q, = Q and Q2 = {ele3,  
eze3; e3,  e4e3, e5e5} (K = (0,O)). The spinor algebra has the O N B  

O S  = {e4el 9 e4e2; e4e5} 
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of signature (2, 1). Element e4e5 of Qs commutes with both U, we set therefore sI = e4e2, 

s2 = e4el and j = e4e5. This leads to the definition 

so0 = 1 s10 = e4e2 = e4e1 SI1 = e2el 

which gives a linear basis of So over @' generated by { j } .  We have four inner products: 

C -symmetric 

@ -antisymmetric ( Q , Q ) I o = $  Q - $  Q +cLo'Qo'1-4 Q 

@ -antisymmetric 
- 1 1  

00 C-antisymmetric. ( 4 , 9 ) 1 1 = $  Q - +  Q +Iclo1cp10-4 Q 

-00 00- -10 10 -01 01 -11 I 1  
( $ , Q ) o o = $  Q $ (0 -4  Q +d' Q 

00 10 IO 00 11 01 

(4, cpC)Ol = $ 00 Q 01 - 4'Ocpc" - $olQoo+ cL"Q1o 

-00 1 1  -10 01 

Since I: = (1, 1) we obtain for the isometries $ + ' l o +  APUoiA = 1 for ( , 
for ( , 
( , )oo and ( , 

AuWniA = 1 
A p A  = 1 for ( , )ol, A'A = 1 for ( , )ll. The isometry groups are U(2,2) for 

and Sp(4; C) for ( , and ( , )ol. Finally we note that R4.I = R2,3. 
(ii) W 3 , 2 ,  For this algebra we have 5 = 2, 7 = 0, u = 1 and 

R3.2 = *W(2). 

Let Q = { e , ,  e 2 ,  e 3 ;  e4, e5}  be an O N B  of W3,' of signature (3,2).  We set 

o O = { e 4 e 1 ,  e4e2, e4e3; e4 ,  e4e5) 

and find u1 = e , ,  u2 = e2e5. The associated O N B  are Q1 = Q and Q2 = {ele5,  e2e5, e ,e , ;  
e=,, e4e5} ( K  = (0,O)). The spinor algebra has the O N B  

QS = {e4el , e4e2 9 e4e3> 

of signature (3,O). We set further s1 = e4el ,  s2 = e4e2 and a = e4e3. This leads to 

so0 = 1 s I O  = e4e1 = e4e2 SI1 = ele2 

(4, Q)oo = ( $0O)hbQ00_ ($lO)hbQlO- ( $Ol)hbQIO+ ( $ l y Q 1 l  

(4,Q)ol=$ Q cc, cp - $  cp ++  Q 

(4,Q)ll=(+oo)hbQ11-($10)hbQo1+(4 ) Q - ( 4  Q 

which is a linear basis of So over 'W' generated by { a } .  We have four inner products: 

00 IO- 10 00 
( 4 9  Q ) i o = $  Q $ Q + ~ o l P 1 l - $ " Q o l  

00 01 - 10 11 01 00 11 10 

01 hb 10 I I  hb 00 

which are hbhymmetr ic ,  'Rantisymmetric, 2R-antisymmetric and hbR-antisymmetric, 
respectively. ( , and ( , Io1 are equivalent and reducible inner products, and their 
isometry group is Sp(4; IW)OSp(4; W). Similarly ( , )oo and ( , )11 are equivalent with 
isometry group GL(4; W) (see Porteous 1969). 

6.6. The conformal Cliflord algebra 

We have 5 = 2 ,  q = 2 ,  u=O and 

W2,4 w(4)* 

Let Q = { e , ,  e'; e 3 ,  e4, e5, e,} be an O N B  of signature (2,4). We set 

QO = ie4e1 9 e4e2 ; e4 9 e4e3,  e4e5 9 e4e6}. 
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From this O N B  we find u I  = e, and u2 = e2e3 with associated O N B  QI = Q and 92 = 
{ e1e3, e2e3 ; e3, e4e3, e5e3, e6e3}. For the spinor algebra we have 

Qs = e4e5, eoen}* 

The elements of Qs which commute with the U are e4e5 and e4e6. We set s1 = e2e4, 
s2 = ele4 and j ,  = e4e5, j 2  = e4e6 and 

so0 = 1 SI0 = $1 so1 = s2 SI1 = e2e1 j ,  = e 5 e 6 *  

{ s A :  A E  1 2 }  is a linear basis of S over W‘, which is generated by {jl, j J .  We have four 
inner products: 

fi-symmetric 

fi-antisymmetric 

fi-antisymmetric 

W-antisymmetric. 

-00 00- -10 I O  -01 01 - 1 1  1 1  ( 4 , c p ) o o = 4  cp 4 (0 - +  cp + 4  cp 

(4, cp)10= 4 -00 cp 10- (I, -10 cp 00 +$0lcp11 - $ l l c p O I  

(4,cp)ol=4 -00 cp 01 - 4  -10 cp 1 1  - *  -01 cp 00 +4 - 1 1  cp 10 

(4,cp)11=4 cp - 4  (0 -1-rL cp 4 (0 
-00 I I  -10 01 -01 10- -11 00 

The first three inner products are equivalent and have Sp(2,2; W) as isometry group. 
( , ) 1 1  has the isometry group O(4; W) with A‘A = 1. 

In all examples discussed above the inner products ( , ) I  or ( , ) 1 1  have been 
constructed to correspond to the conjugation anti-involution. The results found are 
in agreement with those of Porteous (1969). 

7. Conclusions 

We introduced a new representation of Clifford algebras in a constructive way. Given 
a Clifford algebra R,, one needs only find an O N B  Qo of signature (5 ,  5 - t  7 )  for cr = 0, 
( 5 + 1 , 5 )  for m = l ,  7 = 0  or (5 ,5+3)  for a = l  and 7 = 2  to begin the construction. 
Lemma 1 gives a constructive way to obtain an O N B  of R,, of any signature (I; s), for 
which R,, = R,, holds. After the determination of Qo the method of 8 3 gives a 
canonical way to construct the circle operation and the spinor algebra. This does not 
mean that the representation obtained thus depends only on Qo. As becomes obvious 
from (51) and ( 5 2 )  the representation depends primarily on H and the family of 
gradation involutions w , ,  i = 1 , .  . . , 5  introduced in (49) and associated to the O N B  

constructed in theorem 4. It is not easy to control how the representation operation 
U and the spinor algebra So changes under changes of H and w i .  However, from 
theorem 3 we know that all representations obtained by such changes are equivalent?, 
being equivalent to “W,(2‘).  An answer to the above question can be given perhaps 
by working in a higher level of abstraction, freeing the method from its constructive 
character. Although a characterisation of the subalgebra of Rp,, generated by H 
independent of Qo is almost obvious from the properties in (i) of theorem 4 it is not 
yet clear to the author how to characterise the subset H of it and the associated family 
of gradation involutions independent of Qo . 

t This is not in contradiction to the well known fact that not simple Clifford algebras ( U  = 1) have two 
inequivalent representations. The use made here of the double fields 2K allows us to handle both representa- 
tions in a unified way as a single object. 
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In physics Clifford algebras arise mainly as structures associated to a given linear 
space with an inner product (e.g. the tangent space of a manifold carrying a metric). 
The question arises then of how the representation obtained here changes under 
diff eomorphisms and local isometries. We will treat this question and related problems 
in a separate paper. 
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